numerical study of operating pressure effect on carbon nanotube growth rate and length uniformity

Authors

b. zahed

t. fanaei s.

a. behzadmehr

h. ateshi

abstract

chemical vapor deposition (cvd) is one of the most popular methods for producing carbon nanotubes (cnts). the growth rate of cnts based on cvd technique is investigated by using a numerical model based on finite volume method. inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as carrier gas enters into a horizontal cvd reactor at atmospheric pressure. in this article the operating pressure variations are studied as the effective parameter on cnt growth rate and length uniformity.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerical Study of Operating Pressure Effect on Carbon Nanotube Growth Rate and Length Uniformity

Chemical Vapor Deposition (CVD) is one of the most popular methods for producing Carbon Nanotubes (CNTs). The growth rate of CNTs based on CVD technique is investigated by using a numerical model based on finite volume method. Inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as carrier gas enters into a horizontal CVD reactor at atmospheric pressure. In thi...

full text

Numerical Study of Furnace Temperature and Inlet Hydrocarbon Concentration Effect on Carbon Nanotube Growth Rate

Chemical Vapor Deposition (CVD) is one of the most important methods for producing Carbon Nanotubes (CNTs). In this research, a numerical model, based on finite volume method, is investigated. The applied method solves the conservation of mass, momentum, energy and species transport equations with aid of ideal gas law. Using this model, the growth rate and thickness uniformity of produced CNTs,...

full text

Numerical Study of Furnace Temperature and Inlet Hydrocarbon Concentration Effect on Carbon Nanotube Growth Rate

Chemical Vapor Deposition (CVD) is one of the most important methods for producing Carbon Nanotubes (CNTs). In this research, a numerical model, based on finite volume method, is investigated. The applied method solves the conservation of mass, momentum, energy and species transport equations with aid of ideal gas law. Using this model, the growth rate and thickness uniformity of produced CNTs,...

full text

numerical study of furnace temperature and inlet hydrocarbon concentration effect on carbon nanotube growth rate

chemical vapor deposition (cvd) is one of the most important methods for producing carbon nanotubes (cnts). in this research, a numerical model, based on finite volume method, is investigated. the applied method solves the conservation of mass, momentum, energy and species transport equations with aid of ideal gas law. using this model, the growth rate and thickness uniformity of produced cnts,...

full text

Numerical Analysis of Inlet Gas-Mixture Flow Rate Effects on Carbon Nanotube Growth Rate

The growth rate and uniformity of Carbon Nano Tubes (CNTs) based on Chemical Vapor Deposition (CVD) technique is investigated by using a numerical model. In this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal CVD reactor at atmospheric pressure. Based on the gas phase and surface reactions, released carbon...

full text

numerical analysis of inlet gas-mixture flow rate effects on carbon nanotube growth rate

the growth rate and uniformity of carbon nano tubes (cnts) based on chemical vapor deposition (cvd) technique is investigated by using a numerical model. in this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal cvd reactor at atmospheric pressure. based on the gas phase and surface reactions, released carbon...

full text

My Resources

Save resource for easier access later


Journal title:
transport phenomena in nano and micro scales

Publisher: university of sistan and baluchestan, iranian society of mechanical engineers

ISSN 2322-3634

volume 2

issue 1 2014

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023